
Image Colorization using Regression, Classification and GAN

Weiji Li
University of Michigan
weijili@umich.edu

Haoyi Qiu
University of Michigan
haoyiqiu@umich.edu

Yizhi Tang
University of Michigan

tangyz@umich.edu

Lingzi Liao
University of Michigan
lynliao@umich.edu

Zilin Zhang
University of Michigan

zzilin@umich.edu

1. Introduction
1.1. Motivation

Classic old photos could be limited by the technology of
the era and passed down only in the grayscale form. Al-
though black and white photos can sometimes reveal spe-
cial poetic feelings, colorized photos give people a stronger
sense of immersion. Restoring black and white photos is a
popular and interesting topic in society. Our group tries to
explore ways to do the restoration to colorize the grayscale
input images with plausible color versions. Instead of train-
ing models to restore the original colors, we aim to achieve
the colorization that is considered reasonable by people.

We learned about the basic concepts and implementa-
tions of neural networks. Convolutional neural networks
(CNN) are popular models in the image colorization field
based on its strong ability of learning the features at vari-
ous levels through convolution and pooling operations. For
image processing, CNNs examine features of different ob-
jects on images from helpful aspects for image colorization,
including color, brightness, and local details such as edges,
corners, and lines. In our project, we choose to develop our
models using convolutional neural networks.

1.2. Related Work

Our models are mainly inspired by the ideas in [9] and
[6]. Our regression and classification models use CNNs to
extract features from the images and predict the potential
colors by regression and color distribution respectively. Our
generative adversarial networks (GAN) [3] models use the
idea of generator and discriminator from [6] and we also
adapted its network structure.

1.3. Summary

Our models take L (perceptual lightness) channel in LAB
color space as input and predict the AB (four unique colors
of human vision: red, green, blue, and yellow) channels af-

ter feeding large-scale training data of colorful images. We
implement regression, multinomial classification, and GAN
in this project, and evaluate the colorization results using
quantitative evaluation and human study methods, respec-
tively, to compare the performance between the three mod-
els.

2. Data

Figure 1. A demonstration of images and their colorfulness score.

The dataset is chosen from colorful images in ImageNet-
ILSVRC2014 1 Dataset. We randomly pick about 20,000
images from 569 object categories and adjust the resolution
to 128× 128 pixels in LAB color space. The training, test-
ing, and validation split varies between models and we will
discuss it in the Experiment section. Within the randomly
selected images, some are not as colorful. There is little
difference between the original images and the converted
grayscale images and thus they are not helpful for training
purposes. To solve this problem, as demonstrated in the fig-
ure 1, we apply the Hasler and Süsstrunk’s approach [4],
calculating a colorfulness score for each image and pick-
ing out colorful images. Specifically, among 16000 training
images, we choose the top 11849 colorful images as our
training dataset.

1http://www.image-net.org/challenges/LSVRC/2014/

1



3. Approaches
Recently, deep neural networks have shown remarkable

success in image colorization. This success may be due to
their ability to capture and use semantic and textural infor-
mation in the original image ([2], 2). Therefore, our work
leverages large-scale data and relies on fully convolutional
neural networks.

We work with the images in the LAB colorspace, which
contains the same information as RGB, but is easier to sepa-
rate the lightness channel from the other two. The grayscale
images can be thought of as the L-channel of the images in
the LAB colorspace, and our objective is to find the A and
B components.

We aim to produce a colored image with three channels
per pixel from a grayscale image with only one channel per
pixel (lightness). For simplicity, we will only work with
images of size 128× 128. Therefore, our inputs are of size
1 × 128 × 128 (the lightness channel of original colored
images), and outputs are of size 2 × 128 × 128 (the pre-
dicted two channels). We try to predict the color values of
the input grayscale image by regression, classification, and
adversarial learning, respectively.

3.1. Regression

Figure 2. Regression Network Architecture

Inspired by semantic segmentation, we want to use an
encoder-decoder style architecture to tackle this regression
problem. We first use several convolutional layers to extract
semantic information from the input images and then ap-
ply deconvolutional layers to upscale the extracted informa-
tion. Specifically, the beginning of our model is a ResNet-
18 ([5]), an image classification network with 18 layers and
residual connections. We modify the first layer of the net-
work to accept grayscale input images and cut it off after the
6th set of layers. It predicts a two-element vector (AB chan-
nel) for each pixel of the image at the end of the network,
as demonstrated in the figure 2.

We want to minimize the Euclidean error between the
AB channel we estimate and the ground truth. However,

2https://tinyclouds.org/colorize/

this loss function is problematic for colorization due to the
multimodality of the problem since there may be multiple
plausible solutions. As a result, our model will usually
choose desaturated colors which are less likely to be ”very
wrong” than bright, vibrant colors. We optimize the loss
function with the Adam optimizer. We train our model on
10k images with learning rate 1e-2, weight decay rate 1e-3,
training batch size 256, and validation batch size 32 in 50
epochs. Batching the data at each epoch, then doing a for-
ward pass to obtain the probabilities. We then calculate the
loss and perform the backward pass, apply gradient descent
and update the trainable parameters.

3.2. Classification

Figure 3. Classification Network Architecture

We improve our regression method into a classification
to solve the multimodality problem. We quantize the AB
space of the LAB color space into 313 bins and find a bin
number between 0 and 312 for every pixel. The color pre-
diction task is now a multinomial classification problem
where every gray pixel can choose its AB channel from 313
classes. Inspired by the architecture proposed by Zhang et
al. ([9]), we use a single-stream, VGG-styled network with
added depth, dilated convolutions, and deconvolutional lay-
ers ([1],[8]). Each block has two or three convolutional lay-
ers followed by a Rectified Linear Unit and terminating in a
Batch Normalization layer, as demonstrated in the figure 3.

We use a multinomial cross-entropy loss as our objective
function. Let the output of the CNN be Z given an input
image X . We transform all color images Y in the train-
ing set to their corresponding Z value. For every pixel in
the original colored image Yh,w, we find the nearest quan-
tized ab bin and represent Zh,w as a one-hot vector. Since
soft-encoding works well for training, we find the 5-nearest
neighbors to Yh,w using KNN and weight them proportion-
ally to their distance from the ground truth using a Gaussian
kernel with σ = 5. Since colors’ distribution in ImageNet is
heavy around the gray line, we need to modify the standard
cross-entropy loss into

L(Z, Ẑ) = − 1

HW

∑
h,w

v(Zh,w)
∑
q

Zh,w,q log(Zh,w,q),

where the color rebalancing term v(.) is used to rebalance
the loss based on the rarity of the color class. This con-
tributes towards getting more vibrant and saturated colors

2



in the output. We optimize the loss function with the Adam
optimizer. Due to the limit of GPU memory, we train our
model on 8k images with learning rate 1e-3, weight decay
rate 1e-3 in 5 epochs. However, we did not successfully
output the expected colored image after training the model.
We summarize the potential reasons for the failure are (1) an
inadequate number of training data (comparing to the work
done by Zhang et al. [9], they trained the whole model with
1.3M pictures); (2) incorrect implementation in the objec-
tive function. We plan to tackle this problem in future work.

3.3. GAN

Figure 4. The pipeline of our GAN model

The third model we used is Generative Adversarial Net-
work (GAN) ([3]). Unlike the previous two models, this
model contains two neural networks: a generator and a dis-
criminator. The generator works like previous models, takes
in a black-white image and outputs the predicted colored
image. The discriminator is trained to classify the predicted
color image as false and the ground-truth color image as
true.

The pipeline of the model on a black-white image and
the corresponding colored image is shown in the figure 4.

For the generator, we adapt the similar model from ([6]),
which is a ResNet-like ([5]) network. The generator is com-
posed of an encoder and a decoder. The encoder has a se-
quence of layers like this,

C64−C128−C256−C512−C512−C512−C512−C512

The C{n} layer here means Convolution-BatchNorm-ReLU
layer with n filters. All conv layers have filter 4 x 4 and
stride 2, which downsample the image by 2. The Relu in
the encoder is leaky with slope 0.2. The decoder has a se-
quence,

C512−C512−C512−C512−C256−C128−C64−X

First 3 layers also contain a dropout layer of 50%. Lastly,
the X layer is an additional conv layer from 64 to 2 (output
channel for AB).

For the discriminator, we also adapt the similar model
from ([6]). It has a sequence of layers like this,

C64− C128− C256− C512

The Relu is leaky with slope 0.2. After the last conv layer, a
convolution layer is added to produce a 1-dimensional out-
put. Each value is then applied by a sigmoid function. The
output would be a 1-dimensional image with value 0 or 1,
indicating each pixel is fake or real.

In terms of loss function, there are two main loss func-
tions applied here. First, the loss of the discriminator is
computed as the average of its loss on a true image and its
loss on a fake image. Each loss is a MSE loss for each
pixel on the image (labeled 0 or 1). This loss could effec-
tively capture whether this discriminator could distinguish
between ground-truth image and generated image. Second,
the loss of the generator is λ times L1 loss between pre-
dicted image and true image, plus discriminator loss on pre-
dicted image with label true. This loss could make the gen-
erator generate images that have less difference with true
image and less loss from the discriminator.

During training periods, we would call forward(), back-
ward() on D, and backward() on G. This serves a training
procedure for each epoch. Then we perform training on our
dataset, the hyper parameters are listed here.

Data size: 11849, Batch size: 32, Learning Rate: G:
2 · 10−4, D: 2 · 10−4, lambda on L1 loss: 500, Optimizer:
Adam

4. Experiments

Figure 5. The training loss for regression

We randomly choose around 4k images in the ImageNet
as our test dataset. We pre-process our training data to
have higher colorfulness scores so the trained model can
learn more about the semantic and textural information of

3



Figure 6. The training loss for GAN: Generator

the images and predict more reasonable colors on the in-
put grayscale images. Due to randomness, if the test dataset
has the images in the same categories as the training dataset,
then the test results can tell us how well our model learn the
information within a specific category; if the test dataset has
the images not in the same categories as the training dataset,
then the test results can tell us how well our model performs
on the generalization.

We utilize three evaluation metrics in total and the sum-
mary of the results are shown in the table.

Firstly, structural similarity index measure (SSIM), a
method quantifying differences in structure, contrast, and
luminance. One advantage of SSIM is that it correlates to
the human visual system (HVS) since human perception is
very sensitive to structural change[7].

Secondly, we calculate the raw accuracy (AuC): the per-
centage of the predicted pixel is within a certain thresh-
old compared to the ground truth pixel in ab color space.
Specifically, we calculate the L2 distance between the pre-
dicted pixel and original pixel. Sweeping the threshold from
1 to 100, we have percentages of pixels within these thresh-
olds, and the area under the curve (AuC) is calculated.

Lastly, we use human evaluations. For colorization prob-
lems, the ultimate goal is to colorize a grayscale image,
making it plausible to a human observer. Therefore, to test
each model’s performance, it is essential to let humans man-
ually evaluate the quality. In detail, 100 images are taken
out from each model’s test results and evaluated by human
graders from a 1 to 5 scale. All images are randomly as-
signed to each grader to ensure fairness.

From table 1, we can see that regression has higher SSIM
and AuC than GAN, but less human evaluation score than
GAN. We think the reason is that regression is minimizing
pure loss so the sum of L2 norm between predicted image
and original image would be less, but the predicted may
not be visually similar to the original image. However, the
GAN has a discriminator instead of a pure loss so it could
make the predicted image more visually reasonable. Over-
all, the GAN model carries out the colorization task better.

5. Implementation
We write the image preprocessing code for regression

and classification models, which mainly focuses on convert-

SSIM AuC Human
Classification / / /

Regression 0.99896 0.97000 2.21
GAN 0.92393 0.72781 2.63

Table 1. Evaluation Metrics

Figure 7. Results

ing the image in RGB format into LAB colorspace and sep-
arating the lightness channel from the other two channels.
We also create a class object for creating data loaders. We
adapt the code for reading FacadeDataset in the homework.

For the regression model, we adapt some of the network
code from this repo 3. For the classification model, we adapt
some of the network code from this repo 4 and this repo5.
We write all the training and test code on these two models.

For the GAN model, we adapt some of the GAN code
from this repo 6. The network is adapted from [6]. Besides,
all the training code on GAN model is written by us.

3https://lukemelas.github.io/image-colorization.html
4https://github.com/richzhang/colorization
5https://github.com/hsalhab/Coloring-in-the-Deep
6https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

4



References
[1] Liang-Chieh Chen, G. Papandreou, I. Kokkinos, K. Murphy,

and A. Yuille. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully con-
nected crfs. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 40:834–848, 2018. 2

[2] Zezhou Cheng, Q. Yang, and Bin Sheng. Deep coloriza-
tion. 2015 IEEE International Conference on Computer Vi-
sion (ICCV), pages 415–423, 2015. 2

[3] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. 2014. 1, 3

[4] David Hasler and Sabine E. Suesstrunk. Measuring col-
orfulness in natural images. In Bernice E. Rogowitz and
Thrasyvoulos N. Pappas, editors, Human Vision and Elec-
tronic Imaging VIII, volume 5007, pages 87 – 95. International
Society for Optics and Photonics, SPIE, 2003. 1

[5] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. 2, 3

[6] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-image translation with conditional adversar-
ial networks. 2018. 1, 3, 4

[7] Peter Ndajah, Hisakazu Kikuchi, Masahiro Yukawa, Hidenori
Watanabe, and Shogo Muramatsu. Ssim image quality metric
for denoised images. pages 53–57, 11 2010. 4

[8] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. CoRR, abs/1511.07122, 2016. 2

[9] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful
image colorization. 2016. 1, 2, 3

5


